

1

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

Developer’s Guide

Moverio Basic Function SDK

Seiko Epson Corporarion

2

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

Trademarks

The product names, brand names, and company names mentioned in this guide are the trademarks or

registered trademarks of their respective companies.

microSD and ｍicroSDHC are the trademarks or registered trademarks of the SD Card Association.

Wi-Fi®, Wi-Fi Direct™, and Miracast™ are the trademarks or registered trademarks of the Wi-Fi Alliance.

The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc., and any

use of such marks by the Seiko Epson Corporation is under license.

USB Type-CTM is a trademark of the USB Implementers Forum.
Google, Google Play, and Android are the trademarks of Google Inc.

Windows is the trademark or registered trademark of the Microsoft Corporation in the USA, Japan, and

other countries.

Mac and Mac OS are the trademarks of Apple Inc.

Intel, Cherry trail, and Atom are the trademarks of the Intel Corporation in the USA and other countries.

Other product names used herein are also for identification purposes only and may be trademarks of their

respective owners. Epson disclaims any and all rights in those marks.

This material is not sponsored by Unity Technologies or its affiliates and is not affiliated with Unity

Technologies or its affiliates. "Unity" is a trademark or registered trademark of Unity Technologies or its

affiliates in the United States and other regions.

3

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

Contents

Overview of the Moverio software development

Supported function by model

Android application software development procedure

Display control

Sensor Control

Camera control

Audio control

Device management

Moverio Controller Summary

Network debug

Using MoverioSDK from Kotlin

About Android multi display

Windows application development

Windows display control

Windows sensor control

Windows camera control

Windows audio control

Windows device control

4

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

Summary of MOVERIO application software

development

Android application software development, you need the Android Software Development Kit (Android

SDK）with is provided by Google and Moverio dedicated software development kit (Moverio SDK）which is

provided by Epson. Using MOVERIO SDK, your application software can use the display, the camera and

the sensors which are equipped on the MOVERIO. Moverio SDK is supported the BT35E or later model with

compatible API, then your software can be work on newer MOVERIO. Using Unityplug in wich si contained

MOVERIO SDK, you can use devices on the MOVERIO such as display, camera and sensors.

Windows aplication software can be develop with Windows standard development environment.

MOVERIO software development environment

Android Studio Unity*1 Visual Studio

Android ✔ ✔

Windows

✔

※1 Unity 2018.4.0f1 or later is supported

Note : Regarding head set model

Headset model such as BT-40 can be connected by USB to Android smartphone and Windows PC.

However, some of MOVERIO function cannot be used by compatibility of Android smartphone and

Windows PC.

It is not supported Linux PC.

5

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

Scope of application of Moverio SDK

The Moverio SDK will keep compatibility with later model by updating of version. Please use latest version

of the MOVERIO SDK.

The Moverio SDK is not compatible with prior to the BT-350. The Moverio SDK is only allpy to develop

Android application software. When developing an Android application, it can coexist with the SDK

provided for past models. However, you need to use dedicated SDK each model prior to the BT-350.

BT-200 BT-2000

BT-2200

BT-300 BT-350 BT-35E BT-30C BT-40

BT-40S

Android SDK ✔ ✔ ✔ ✔

BT-200 SDK ✔

BT-2000 SDK

✔

BT-300 SDK

✔ ✔

BT-350 SDK

✔

Moverio SDK

V1.0.0/1.0.1

✔ ✔

Moverio SDK

V1.1.0

✔ ✔ ✔

6

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

Supported function by Model

Each MOVERIO has slight different functionality, The MOVERIO SDK supports those function by each

model.

Display control

Function BT-35E/30E BT-30C BT-40

Brightness adjustment (manual) ● ● ●

Brightness adjustment (auto) ● ●

Switch 2D/3D mode ● ● ●

Display on/off setting ●

Display pixcell shift function ●

Display automatic sleep ●

Display manual sleep ●

Sensor control

Function BT-35E/30E BT-30C BT-40

Accelerometer ● ● ●

Geomagnetic sensor ● ● ●

Gyro sensor ● ● ●

Illuminance sensor ● ●

Gravity sensor ● ● ●

Linear accelerometer ● ● ●

Rotation vector sensor ● ● ●

Geomagnetic sensor unused rotation

vector sensor

 ●

Uncalibrated accelerometer ●

Uncalibrated geomagnetic sensor ●

Uncalibrated gyro sensor ●

Headset motion detection ●

Headset stillness detection ●

Headset tap detection ●

7

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

Camera control

Function BT-35E/30E BT-30C BT-40

Preview display ●

Getting camera image ●

Shooting still image / movie ●

Setting resolution/framerate ●

Exposure compensation mode

setting

●

Manual exposure compensation

step adjustment

●

Sharpness adjustment ●

White balance adjustment ●

Power line frequency setting ●

Auido control

Function BT-35E/30E BT-30C BT-40

Adjusting the earphone volume ● ●

Device information

Function BT-35E/30E BT-30C BT-40

Headset system status ● ● ●

Headset serial number ●

Product name ● ● ●

Headset system version ● ● ●

Device tempreture ●

8

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

Android application software developmet procedure

Android SDK

Following is an explanation how to install Android SDK using Windows 10 PC as an example.

In this document, the device (MOVERIO controller) that executes the developed software is called the host

device.

Download Android Studio

Android Studio will be downloaded from following Android developer’s site.

Current version is Android Studio 4.0.1 (as of Aug. 2020）

https://developer.android.com/studio/

Install Android Studio

Follow an instller instlaction and install Android Studio on your PC.

The later explanation is based on the SDK is installed in the following folder

 C:\Users\<user name>\AppData\Local\Android\Sdk

Android Studio proxy settings

When developing an application in a network environment that requires proxy settings, set the Android

Studio proxy settings. Please check the detailed procedure on the site below.

https://developer.android.com/studio/intro/studio-config#gradle-plugin

If you do not know the proxy settings, ask your network administrator how to connect to the external

network using the proxy.

Acquiring/updating tools with Android SDK Manager

Use the Android SDK Manager for the tools required for application development. Please check the detailed

procedure on the site below.

https://developer.android.com/studio/intro/update#sdk-manager

USB driver settings

Install the USB driver on the PC to connect to target Android device for application development. For USB

driver settings, refer to the procedure of the Android device you are targeting to use as MOVERIO

contoloer.

https://developer.android.com/studio/
https://developer.android.com/studio/intro/studio-config#gradle-plugin
https://developer.android.com/studio/intro/update#sdk-manager

9

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

Connecting MOVERIO controler

This section describes how to connect the host devide to a computer with ADB (Android Debug Bridge)

settings completed.

ADB is a versatile command line tool for communicating with devices, included in the Android SDK

Platform-Tools package.

See below for details.

https://developer.android.com/studio/command-line/adb

Host Divece setting

Please enable the developer settings of the host device. Then enable USB debugging. Check the detailed

steps on the site below.

https://developer.android.com/studio/debug/dev-options

Connecting

Use the ADB connection confirmation command to check if the computer and host device are connected.

Start a command prompt and run;

"cd C:\Users\<user name>\AppData\Local\Android\sdk\platform-tools"

*It is convenient to set the above path as an environment variable.

If you execute "adb devices" and the device name is displayed in the list, ADB connection is established

If it is not displayed, reconnect the host device with USB and execute "adb devices" again.

https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/debug/dev-options

10

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

Embed the Moverio SDK

Below explanation is based on using Android Studio.

Display the Project View of Android Studio and create a "libs" folder from [File]-[New]-[Directory].

After C:\Users\<user name>\AndroidStudioProjects\<application name>\app\libs is created.

Put MoverioSDK_1.0.0.aar there.

Then define your application's minimum API level at 24 and add MoverioSDK_1.0.0.aar to your

application's dependencies.

apply plugin: 'com.android.application'

android {

:

 // define APIlevel 24

minSdkVersion 24

:

}

dependencies {

 :

 // add MoverioSDK.aar

 implementation files('libs/MoverioSDK_1.0.0.aar')

:

:

}

Push the Sync Project with Gradle Files button at the top of Android Studio to reflect Gradle changes to the

project.

build.gradle(Module: app)

11

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

Display Control

Display brightness adjustment

Moverio is equipped with a see-through type display, and the visibility of the displayed image changes

depending on the brightness of the surrounding environment. You can make the displayed image easier to

see by increasing the brightness of the display when the surrounding environment is bright and by

decreasing the brightness of the display when the surrounding environment is dark.

To adjust the display brightness, first establish communication with the Moverio display. To do this, create

an instance of the DisplayManager class and call the open() method.

When using DisplayManager class of Moverio SDK, in order to avoid name collision with DisplayManager

class of Android standard, import “com.epson.moverio.hardware.display.DisplayManager” or use a class

name of “com.epson.moverio.hardware.display.DisplayManager” at the time of instance generation.

ex)

import com.epson.moverio.hardware.display.DisplayManager;

public class DisplayActivity extends Activity {

private com.epson.moverio.hardware.display.DisplayManager mDisplayManager = null;

Next, set the display brightness adjustment mode to manual mode or automatic mode.Use the

setBrightnessMode() method to set it.Pass the BRIGHTNESS_MODE_MANUAL argument for manual mode

and the BRIGHTNESS_MODE_AUTOMATIC argument for automatic mode.It cannot be used the

setBrightness() method to adjust the display brightness when the display brightness adjustment mode is

in automatic mode.

To adjust the display brightness manually, use the setBrightness() method to adjust the display

brightness. For the adjustable display brightness range, refer to Display Brightness Adjastable Range.

Finally, when you finish adjusting the brightness of your display, be sure to disconnect it from your Moverio

display. Use the close() and release() methods to release.

private DisplayManager mDisplayManager = new DisplayManager(context);

try {

mDisplayManager.open();

} catch (IOException e) {

e.printStackTrace();

12

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

}

mDisplayManager.setBrightnessMode(DisplayManager.BRIGHTNESS_MODE_MANUAL);

mDisplayManager.setBrightness(15);

mDisplayManager.close();

mDisplayManager.release();

Switch 2D/3D display mode

The Moverio display supports Side-by-Side 3D content display. If the video displayed by Moverio is

Side-by-Side type 3D content and you want to control it from the app, use the dedicated API.

Side-by-Side format is a method to store image information for left eye and right eye side by side in one

screen information.

When creating Side-by-Side format video, place the left-eye image and right-eye image in the left and

right halves of the video, respectively.

For example, when creating a 1280x720 (HD size) Side-by-Side format image, place a 640x720 image in

the left-eye image and a 640x720 image in the right-eye image as shown below.

13

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

To switch the display between 2D/3D display mode, first establish communication with the display of

Moverio. To do this, create an instance of the DisplayManager class and call the open() method.

Next, set the 2D/3D display mode of the display to 2D display mode or 3D display mode. To set it, use the

setDisplayMode() method. Pass the DISPLAY_MODE_2D argument for 2D display mode and the

DISPLAY_MODE_3D argument for 3D display mode.

Finally, when you finish setting the 2D/3D display mode, be sure to disconnect the communication with the

Moverio display. Use the close() and release() methods to release.

private DisplayManager mDisplayManager = new DisplayManager(context);

try {

mDisplayManager.open();

} catch (IOException e) {

e.printStackTrace();

}

mDisplayManager.setDisplayMode(DisplayManager. DISPLAY_MODE_3D);

mDisplayManager.close();

mDisplayManager.release();

14

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

Disdplay On/Off

If you want to hide the video displayed on Moverio, use the dedicated API.

To set the display on/off, first establish communication with the display on the Moverio. To do this, create

an instance of the DisplayManager class and call the open() method.

Then set the display to on or off. To set it, use the setDisplayState() method. Pass the DISPLAY_STATE_ON

argument to show the display and the DISPLAY_STATE_OFF argument to hide the display.Finally, when

you've completed On/Off your display, be sure to disconnect it from your Moveio display. Use the close()

and release() methods to release.

private DisplayManager mDisplayManager = new DisplayManager(context);

try {

mDisplayManager.open();

} catch (IOException e) {

e.printStackTrace();

}

mDisplayManager.setDisplayState (DisplayManager.DISPLAY_STATE_OFF);

mDisplayManager.close();

mDisplayManager.release();

15

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

Display distance control

You can adjust the display distance of Moverio's display using a dedicated API. The dedicated API has a

function to horizontally shift the left and right display images. You can adjust the display congestion

according to the horizontal shift amount.

 If the actual object is closer than the display distance, shift the left and right images inward as shown

below. By doing so, the virtual display distance of the display can be reduced.

If the actual object is farther than the display distance of the display, shift the left and right images

outward as shown below. By doing so, the virtual display distance of the display can be increased.

However, since the left and right images are shifted by using this function, the edges of the left and right

images will be interrupted. Therefore, it is necessary for the application to consider the screen

configuration according to the amount of video shift. For the relationship between the virtual display

distance of the display and the image shift amount, refer to the range of the virtual display distance

adjustment and the horizontal shift amount.

To adjust the display's virtual viewing distance, first establish communication with the Moverio display. To

do this, create an instance of the DisplayManager class and call the open() method.

Next, set the adjustment amount step. For setting, use the setScreenHorizontalShiftStep() method. For

the adjustment amount step, refer to the range of adjustable virtual display distance step and the

horizontal pxicell shift amount.

Finally, when you're done making adjustments, be sure to disconnect your Moverio display. Use the close()

and release() methods to release.

private DisplayManager mDisplayManager = new DisplayManager(context);

try {

mDisplayManager.open();

} catch (IOException e) {

video

object

video

object

16

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

e.printStackTrace();

}

mDisplayManager. setScreenHorizontalShiftStep(39);

mDisplayManager.close();

mDisplayManager.release();

17

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

Display automatic sleep

You can set the automatic sleep setting of Moverio's display using a dedicated API.

When the display's automatic sleep setting is enabled, putting the Moverio on/off and placing it on a desk

will turn off the display automatically. Also, the display will be displayed automatically when the MOVERIO

headset is installed. By enabling this function, it is possible to reduce the power consumption when the

Moverio headset is not installed.

To set the display to auto-sleep, first establish communication with the Moverio display. To do this, create

an instance of the DisplayManager class and call the open() method.

Next, enable or disable the display's automatic sleep setting. Use the setDisplayAutoSleepEnabled()

method for setting. Pass the DISPLAY_AUTO_SLEEP_ENABLE argument to enable the setting and the

DISPLAY_AUTO_SLEEP_DISABLE argument to disable the setting.

Finally, when you're done with the settings, make sure you disconnect from the Moverio display. Use the

close() and release() methods to release.

private DisplayManager mDisplayManager = new DisplayManager(context);

try {

mDisplayManager.open();

} catch (IOException e) {

e.printStackTrace();

}

mDisplayManager. setDisplayAutoSleepEnabled(DisplayManager.DISPLAY_AUTO_SLEEP_ENABLE);

mDisplayManager.close();

mDisplayManager.release();

18

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

Display manual sleep

A dedicated API can be used to set the user to manually put the Moverio display to sleep.

If you have enabled the display's manual sleep setting, tap the side of the Moverio to turn off the display.

Also, tap the side of Moverio again to show the display. This function can be used when the wearer of

Moverio wants to immediately turn off the front image.

To set the display to manual sleep, first establish communication with the display in Moverio. To do this,

create an instance of the DisplayManager class and call the open() method.

Next, enable or disable the manual sleep setting on the display. Use the setDisplayUserSleepEnabled()

method for setting. Pass the DISPLAY_USER_SLEEP_ENABLE argument to enable the setting and the

DISPLAY_USER_SLEEP_DISABLE argument to disable the setting.

Finally, when you're done with the settings, make sure you disconnect from the Moverio display. Use the

close() and release() methods to release.

private DisplayManager mDisplayManager = new DisplayManager(context);

try {

mDisplayManager.open();

} catch (IOException e) {

e.printStackTrace();

}

mDisplayManager. setDisplayUserSleepEnabled(DisplayManager.DISPLAY_USER_SLEEP_ENABLE);

mDisplayManager.close();

mDisplayManager.release();

19

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

Creating images for the see-through function

MOVERIO is a device that uses projection technology. This system provides the user with an image projected

onto a half-mirror via a light-guided panel, creating a half-mirror version (whereby not all the pixels are

needed) allowing images to be arranged over a real-life scene giving a sense of transparency, and creating a

more vivid augmented reality experience.

To create this transparent background effect, so visual elements (text, graphics...) stand out vividly, the

background will need to be set to black when drawing on the projection, so you display the target section

overlapping with the actual images.

Display Brightness Adjastable Range

The display brightness adjustment range that can be selected differs depending on the model.

Model Range of brightness

BT-35E/30E 0 ~ 20

BT-30C 0 ~ 20

BT-40 0 ~ 20

The range of adjustable virtual display distance step and the

horizontal pxicell shift amount

Refer to the table below for the virtual display distance range and horizontal shift amount that can be

adjusted.

The display distance is a reference value, not a guaranteed value.

※BT-35E/30E and BT-30C are not supported.

Step BT-40

Pixcell shift amount

Display distance [m]

reference value

0 256 0.76

1 248 0.79

2 240 0.81

3 232 0.83

4 224 0.85

20

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

5 216 0.88

6 208 0.91

7 200 0.94

8 192 0.97

9 184 1.00

10 176 1.03

11 168 1.07

12 160 1.11

13 152 1.16

14 144 1.20

15 136 1.26

16 128 1.31

17 120 1.37

18 112 1.44

19 104 1.51

20 96 1.60

21 88 1.69

22 80 1.79

23 72 1.91

24 64 2.04

25 56 2.19

26 48 2.37

27 40 2.58

28 32 2.83

29 24 3.13

30 16 3.50

31 8 3.98

32 0(default) 4.60

33 -8 5.45

34 -16 6.70

35 -24 8.68

36 -32 12.32

21

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

Sensor Control

The MOVERIO has various sensors in the headset that detect movement, direction, and ambient

illuminance. The Moverio SDK allows you to get the raw data of these sensors. By using the sensor data,

it is possible to guess the movement of the wearer's head and the surrounding brightness.

Sensor List

Moverio is equipped with various types of sensors.

There are hardware-based sensors such as Accelerameter, Geomagnetic Sensor, Gyoro Scope, and

Ambient Light Sensor, as well as software sensors generated from the output values of multiple

hardware-based sensors.

Sonser Type Discription Usage

TYPE_ACCELEROMETER Hardware Measures the acceleration of Moverio

including gravity with the

acceleration [m/s2] of 3 axes (x, y,

z).

Motion detection

(tilt, etc.)

TYPE_MAGNETIC_FIELD Hardware The surrounding geomagnetism is

measured with 3-axis (x, y, z)

geomagnetism [μT].

Orientation

detection

TYPE_GYROSCOPE Hardware The angular velocity of Moverio is

measured with the angular velocity

[rad/s] of 3 axes (x, y, z).

Motion detection

(rotation etc.)

TYPE_LIGHT Hardware Measure the ambient illuminance

[lx].

Adjusting the

brightness of the

display according to

the ambient

illumination

TYPE_GRAVITY Software Gravity is measured by acceleration

[m/s^2] on three axes (x, y, z).

Motion detection

(tilt, etc.)

TYPE_LINEAR_ACCELERATION Software It is measured by acceleration of 3

axes (x, y, z) [m/s^2] excluding

gravity.

Application to tap,

walking detection,

etc.

TYPE_ROTATION_VECTOR Software Measures the orientation of Moverio

with a rotation vector.

Head tracking etc.

TYPE_MAGNETIC_FIELD_UNC

ALIBRATED

Software The surrounding geomagnetism is

measured with uncalibrated 3-axis

(x, y, z) geomagnetism [μT] and

3-axis calibration information

(x_bias, y_bias, z_bias).

Application to

direction detection

and head tracking

22

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

TYPE_GAME_ROTATION_VECT

OR

Software Measures the orientation of Moverio

with a rotation vector that does not

use geomagnetism.

Head tracking etc.

TYPE_GYROSCOPE_UNCALIBR

ATED

Software The Moverio angular velocity is

measured on the uncalibrated

three-axis (x, y, z) angular velocity

[rad/s] and the estimated drift

three-axis (x_bias, y_bias, z_bias).

Application to

motion detection

(rotation etc.) and

head tracking

TYPE_STATIONARY_DETECT Software Detects the Moverio stationary. Headset

attachment/detach

ment detection,

etc.

TYPE_MOTION_DETECT Software It detects the movement of Moverio. Headset

attachment/detach

ment detection,

etc.

TYPE_ACCELEROMETER_UNC

ALIBRATED

Software The acceleration of Moverio including

gravity is measured with the

uncalibrated 3-axis (x, y, z)

acceleration [m/s2] and the

estimated bias compensation 3-axis

(x_bias, y_bias, z_bias).

Application to

motion detection

(tilt, etc.) and head

tracking

TYPE_HEADSET_TAP_DETECT Software Detects taps on the headset. Headset tap

detection

Axis of Sensors

Moverio's headset sensor is the same as the Android standard sensor coordinate system. When wearing

the Moverio, the X axis points to the right, the Y axis points up, and the Z axis points to the wearer's

direction.

23

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

Auiring sensor values

With the Moverio SDK, you can use various sensors installed in Moverio.

To get sensor data, first establish communication with the sensor in Moverio. To do this, create an instance

of the SensorManager class and call the open() method. At that time, pass the sensor type and sensor data

listener instance as arguments.

Please execute SensorManager#open after confirming that the image is displayed on Moverio after 10

seconds or more after connecting Moverio to the smartphone with USB. If you execute

SensorManager#open within 10 seconds, communication may not be established normally.

When using the SensorManager class of the Moverio SDK, in order to avoid name collision with the Android

standard SensorManager class, import “com.epson.moverio.hardware.sensor.SensorManager” or set a

class name as “com.epson.moverio.hardware.sensor.SensorManager” when creating an instance.

ex)

import com.epson.moverio.hardware.sensor.SensorManager;

public class SensorActivity extends Activity implements SensorDataListener {

private com.epson.moverio.hardware.sensor.SensorManager mSensorManager = null;

The type of sensor supported depends on the model. Check the supported sensor types by using the

getSupportedSensorList() method.

@Override

public final void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

24

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

 mSensorManager = new SensorManager(this);

 // Get supported sensor list.

 List<Interger> sensorList = mSensorManager.getSupportedSensorList();

 Log.v(“Sample”, sensorList.toString();

}

The sensor data can be obtained at any time with the registered listener's onSensorDataChanged()

method. The onSensorDataChanged() method is called very fast. In order to use the sensor efficiently in

the application, do not execute the time-consuming processing in the onSensorDataChanged() method as

much as possible. Finally, if you want to end the acquisition of sensor data, please be sure to cancel the

communication with the sensor of Moverio. Use the close() and release() methods to release.

Sensor data can be obtained as an instance of the SensorData class. For details on the SensorData class,

refer to the API reference.

public class SensorActivity extends Activity implements SensorDataListener {

private SensorManager mSensorManager = null;

@Override

public final void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 mSensorManager = new SensorManager(this);

}

@Override

protected void onResume() {

 super.onResume();

try {

mSensorManager.open(SensorManager.TYPE_ACCELEROMETER, this);

} catch (IOException e) {

e.printStackTrace();

}

}

@Override

protected void onPause() {

 super.onPause();

mSensorManager.close(this);

mSensorManager.release();

}

@Override

25

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

public void onSensorDataChanged(SensorData data) {

 // Do something with this sensor value.

}

}

Precaustions for sensor control

When controlling the sensor with Moverio SDK, it can be used with a single application software. If you

want to control the sensor with another application software, be sure to stop using the sensor control of

the application software that is using the sensor control before using it.

If you use multiple sensors at the same time on your Android device, the sensor data acquisition frequency

may decrease.

26

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

Camera control

Moverio has a camera in the headset that captures the front of the wearer. With Moverio SDK, you can

acquire video data from the camera and shoot still images/videos. By using the video data of the camera,

it can be applied to the purposes such as marker recognition in addition to normal shooting.

Note: The camera function of Moverio SDK may not work properly on Android 10 smartphones. Be sure to

check the following operating conditions before using the camera function.

 targetSdkVersion 28 or later targetSdkVersion 27 or older

Android 10 Not work Work

Android 9 or older Work Work

In addition, applications registered in Google Play after November 2019 must have targetSdkVersion set to

28 or higher.

Reference:

https://android-developers.googleblog.com/2019/02/expanding-target-api-level-requirements.html

In order to release an application that incorporates the camera function of Moverio SDK on Google Play, the

target Android version of the application must be 9 or lower.

Note: The CaptureStateCallback class will be deprecated. Please be sure to use the CaptureStateCallback2

class for Version 1.1.0 or later.

CAMERA Specification

 BT-40

Effective pixel count 500 milion pixel

27

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

Color array RGB565

Image resolution/frame rate 640x480, 60fps/30fps/15fps

1280x720, 60fps/30fps/15fps

1920x1080, 30fps/15fps

2592x1944, 15fps

Exposure compensation mode auto/manual

Manual exposure compensation step -5 ~ +5

Sharpness 0 ~ +128

White ballance auto

/cloudy_daylight(6000K)/daylight(5500K)

/fluorescent(4200K)/incandescent(3200K)

/twilight(3500K)

Power line frequency 50Hz/60Hz

28

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

Preview function

You can use the Moverio SDK to display a preview of the camera image installed in Moverio.

To display the preview, first establish communication with the camera of Moverio. To do this, create an

instance of the CameraManager class and call the open() method. At that time, pass the SurfaceHolder of

SurfaceView used for preview display as an argument.

Next, call the startCapture() method of the CameraDevice class to start the acquisition of camera image

data. Then, by calling the startPreview() method of the CameraDevice class, the preview image is

displayed in the SurfaceView of the SurfaceHolder passed by the argument of the open() method.

Please refer to the camera specifications for the color array of the output camera image data.

When using the CameraManager class of the Moverio SDK, in order to avoid name collision with the

AndroidManager CameraManager class, import com.epson.moverio.hardware.camera.CameraManager or

class when creating an instance. Name it com.epson.moverio.hardware.camera.CameraManager

ex)

import com.epson.moverio.hardware.camera.CameraManager;

public class CameraActivity extends Activity implements

ActivityCompat.OnRequestPermissionsResultCallback {

private com.epson.moverio.hardware.camera.CameraManager mCameraManager = null;

If you want to stop displaying the preview, call the stopPreview() method. When you finish using the

camera, call the stopCapture() method to stop the acquisition of camera image data and call the close()

and release() methods to disconnect the communication with the camera.

public class CameraActivity extends Activity implements

ActivityCompat.OnRequestPermissionsResultCallback {

private CameraManager mCameraManager = null;

private CameraDevice mCameraDevice = null;

private SurfaceView mSurfaceView = null;

private CaptureStateCallback2 mCaptureStateCallback2 =new CaptureStateCallback2() {

 @Override

 public void onCameraOpened() {

 mCameraDevice.startPreview();

 }

 :

 abridgement

 :

29

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

};

@Override

public final void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 mSurfaceView = (SurfaceView) findViewById(R.id.surfaceView);

 mCameraManager = new CameraManager(this);

try {

mCameraDevice = mCameraManager.open(mCaptureStateCallback2, null,

mSurfaceView.getHolder());

} catch (IOException e) {

e.printStackTrace();

}

}

@Override

protected void onResume() {

 super.onResume();

mCameraDevice.startCapture();

}

@Override

protected void onPause() {

 super.onPause();

mCameraDevice.stopPreview();

mCameraDevice.stopCapture();

}

@Override

protected void onDestroy() {

 super.onDestroy();

mCameraManager.close(mCameraDevice);

mCameraManager.release();

}

}

30

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

Acquisition of camera image data

With Moverio SDK, you can get the video data of the camera installed in Moverio.

The acquisition of camera image data first establishes communication with the camera of Moverio. To do

this, create an instance of the CameraManager class and call the open() method. At that time, pass an

instance of CaptureDataCallback that receives the data as an argument. Then, by calling the

startCapture() method of the CameraDevice class, you can receive the data with the instance of

CaptureDataCallback passed in the argument of the open() method.

If you want to stop the acquisition of camera image data, call the stopCapture() method. When you finish

using the camera, call the close() method and release() method to disconnect the communication with the

camera.

If you move the app to the background while camera image data is being acquired, acquisition of camera

image data will stop. To restart the acquisition of camera image data, call the startCapture() method

again.

public class CameraActivity extends Activity implements

ActivityCompat.OnRequestPermissionsResultCallback {

private CameraManager mCameraManager = null;

private CameraDevice mCameraDevice = null;

private SurfaceView mSurfaceView = null;

private CaptureDataCallback mCaptureDataCallback =new CaptureDataCallback() {

 @Override

 public void onCaptureData(long timestamp, byte[] data) {

 // Do something with this camera data.

 }

};

@Override

public final void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 mCameraManager = new CameraManager(this);

try {

mCameraDevice = mCameraManager.open(null, mCaptureDataCallback,

mSurfaceView.getHolder());

} catch (IOException e) {

e.printStackTrace();

}

}

31

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

@Override

protected void onResume() {

 super.onResume();

mCameraDevice.startCapture();

}

@Override

protected void onPause() {

 super.onPause();

mCameraDevice.stopCapture();

}

@Override

protected void onDestroy() {

 super.onDestroy();

mCameraManager.close(mCameraDevice);

mCameraManager.release();

}

}

32

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

Shooting still images/videos

With the Moverio SDK, you can shoot video from the camera installed in Moverio as a still image or video.

Shooting stills/videos first establishes communication with the camera of Moverio. To do this, create an

instance of the CameraManager class and call the open() method. At that time, the instance of

CaptureStateCallback2 that receives the status notification of the completion of still image shooting and

the start/end of video shooting is passed as an argument. Then call the startCapture() method of the

CameraDevice class.

To take a still image, call the takePicture() method of the CameraDevice class. When the still image

shooting is completed, you can receive the notification of the still image shooting completed by the

onPictureCompleted() method of the instance of CaptureStateCallback2 passed by the argument of the

open() method.

Call the startRecord() method of the CameraDevice class to start video recording, and call the

stopRecord() method of the CameraDevice class to end video recording. When the start/end of the video

shooting, you can receive the notification of the start/end of the video shooting by the onRecordStarted()

method and onRecordStopped() method of the instance of CaptureStateCallback2 passed by the

argument of the open() method. Video recording can be performed for up to 2 hours. If the video

recording time exceeds 2 hours, the video recording will be forced to end. Also, if the storage capacity falls

below 10% during movie recording, movie recording will be forcibly ended. Executing the stopRecord()

method inside a method such as onStop/onDestroy in the Activity life cycle results in an error.

When you finish using the camera, call the stopCapture() method to stop the acquisition of camera image

data, and then call the close() and release() methods to disconnect the communication with the camera.

33

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

Change camera properties

With Moverio SDK, you can change various properties of the camera installed in Moverio.

To change camera properties, first establish communication with the camera of Moverio. To do this, create

an instance of the CameraManager class and call the open() method. At that time, pass an instance of

SurfaceHolder of SurfaceView used for preview display or an instance of CaptureDataCallback that

receives data. Next, call the getProperty() method of the CameraDevice class to get the current camera

properties as an instance of the CameraProperty class. To change various camera properties, call the

setXXX() methods of the instance of the CameraProperty class.

For example, if you want to change the exposure step of the camera, call the setExposureStep() method

of the CameraProperty class. At that time, pass the exposure step of the changed camera as an argument.

Then, call the setProperty() method of the CameraDevice class to reflect the changed camera properties

on the camera image. At that time, pass the instance of the CameraProperty class that is the changed

camera property as an argument.

Camera properties can be changed even after capturing the camera image by calling the startCapture()

method except for some.

Item Before capturing After captured

Image resolution/Frame rate able to change unable to change

Exprosure compensation mode able to change able to change

Manual exprosure compensation step able to change able to change

Sharpness able to change able to change

White blance able to change able to change

Power line frequency able to change able to change

The manual exposure compensation step can be changed according to the ambient illuminance [lx] of the

usage environment. However, the exposure compensation step for high ambient illuminance may affect

the frame rate of the camera image because the exposure time of the camera is lengthened to

accommodate high ambient illuminance. Details are shown in the table below.

Manual exprosure compensation step mbient illuminance [lx] Maximum frame rate [fps]

+5 50 5.0

+4 100 10.0

+3 150 22.6

+2 200 30.1

+1 500 45.2

0 (=default) 750 60.0 *1

-1 1000 60.0 *1

-2 1500 60.0 *1

-3 2000 60.0 *1

-4 4500 60.0 *1

34

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

-5 9000 60.0 *1

 *1: The frame rate of the camera image of Moverio is 60[fps] at maximum. Also, the frame rate may

decrease depending on the processing performance of the host device.

public class CameraActivity extends Activity implements

ActivityCompat.OnRequestPermissionsResultCallback {

private CameraManager mCameraManager = null;

private CameraDevice mCameraDevice = null;

private SurfaceView mSurfaceView = null;

private CaptureStateCallback2 mCaptureStateCallback2 =new CaptureStateCallback2() {

 @Override

 public void onCameraOpened() {

 mCameraDevice.startPreview();

 }

 :

 abridgement

 :

};

@Override

public final void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_camera);

 mSurfaceView = (SurfaceView) findViewById(R.id.surfaceView);

 mCameraManager = new CameraManager(this);

try {

mCameraDevice = mCameraManager.open(mCaptureStateCallback2, null,

mSurfaceView.getHolder());

} catch (IOException e) {

e.printStackTrace();

}

}

@Override

protected void onResume() {

 super.onResume();

mCameraDevice.startCapture();

CameraProperty property = mCameraDevice.getProperty();

35

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

property.setExposureMode(CameraProperty.EXPOSURE_MODE_MANUAL);

property.setExposureStep(5);

mCameraDevice.setProperty(property);

}

@Override

protected void onPause() {

 super.onPause();

mCameraDevice.stopPreview();

mCameraDevice.stopCapture();

}

@Override

protected void onDestroy() {

 super.onDestroy();

mCameraManager.close(mCameraDevice);

mCameraManager.release();

}

}

36

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

Permission request

When operating an application developed using the Moverio SDK on an Android device for the first time, a

permission request is sent to the user of the Android device. The required permissions are as follows.

Item Timing of request

Camera (Android9 or later） Calling at CameraManager#open() method

USB communication Calling at CameraManager#open() method

Store still image/movie to strage Calling at CameraDevice#startCapture() motod

Permission of audio recording in movie shooting Calling at CameraDevice#startCapture() method

The application implements the ActivityCompat.OnRequestPermissionsResultCallback interface and

receives that the user has granted the permission. At that time, call the onRequestPermissionResult()

method of the PermissionHelper class to notify the user's permission to the Moverio SDK. When the

Moverio SDK is notified of the user's permission, the camera function can be used.

How to save still images/videos on SD card

To save the shooting results of still images/videos to the SD card, access the data storage area for

applications in the SD card. Specify the following path in the takePicture() method of the CameraDevice

class and the startRecord() method of the CameraDevice class.

[SD card path]/Android/data/[package name]/[file name]

Notes on camera control

Camera control using the Moverio SDK can only be used with a single app. If you want to use the camera

control with another app, be sure to stop using the camera control with the app that is using the camera

control before using it.

37

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

Auido control

Moverio can output sound with earphones that conform to the CTIA standard. Moverio SDK allows you to

adjust the volume of the earphones.

Adjusting the earphone volume

 You can increase or decrease the volume of the earphones according to the surrounding environment.

To adjust earphone volume, first establish communication with Moverio audio. To do this, create an

instance of the AudioManager class and call the open() method.

When using the AudioManager class of the Moverio SDK, in order to avoid name collision with the Android

standard AudioManager class, import com.epson.moverio.hardware.audio.AudioManager or class when

creating an instance. Name it com.epson.moverio.hardware.audio.AudioManager.

ex）

import com.epson.moverio.hardware.audio.AudioManager;

public class AudioActivity extends Activity {

private com.epson.moverio.hardware.audio.AudioManager mAudioManager = null;

And to adjust the earphone volume, use the setVolume() method to adjust the earphone volume. For the

earphone volume range that can be adjusted, refer to Earphone Volume Range.

Finally, when you have finished adjusting the earphone volume, be sure to disconnect communication with

Moverio's audio. Use the close() method to release it.

private AudioManager mAudioManager = new AudioManager(context);

try {

mAudioManager.open();

} catch (IOException e) {

e.printStackTrace();

}

mAudioManager.setVolume(12);

mAudioManager.close();

Earphone volume range

Adjustable earphone volume range

38

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

 range

BT-40

＊reference

BT-35E/30E 0 ~ 15

BT-30C 0 ~ 20

39

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

Device management overview

Moverio can detect important system state changes such as USB connection/disconnection with the host

device, display start on the display, and device temperature abnormality. You can also use the

device-specific information of Moverio. Moverio SDK can detect changes in the system status and acquire

device-specific information. By detecting changes in the system state, applications can detect that Morio is

connected and execute a function, or detect that the device has become hot and notify the user. Then, by

using the device-specific information, it is possible to introduce a device authentication mechanism that

allows only a specific Moverio to operate in the application.

Detect changes in system state

The Moverio SDK can detect changes in the system status that are important for using Moverio, such as

USB connection/disconnection, display start on the display, and device temperature abnormalities. By

detecting changes in the system state, applications can detect that Morio is connected and execute a

function, or detect that the device has become hot and notify the user.

To detect system state changes, import com.epson.moverio.system.HeadsetStateCallback.

import com.epson.moverio.system.HeadsetStateCallback;

Implement the HeadsetStateCallback interface in the class that uses this function, and execute

registerHeadsetStateCallback. OnHeadsetAttached() is called when the USB connection with the host

device is detected, and onHeadsetDetached() is called when the USB removal is detected. Also, in order to

start displaying the display and detect changes in the system status due to temperature abnormalities of

various devices, it is necessary to create an instance of the DeviceManager class and execute the open()

method. If the display of the Moverio display is started before the execution of the DeviceManager#open()

method is completed, or if a temperature error occurs in various devices, the change in the system status

cannot be detected. .. Finally, if you want to end the detection of changes in the system state by executing

the DeviceManager#open() method, be sure to cancel the communication with Moverio. To release, use

close() method, release() method and unregisterHeadsetStateCallback().

public class HeadsetStateActivity extends Activity implements HeadsetStateCallback {

private DeviceManager mDeviceManager = null;

@Override

public final void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 mDeviceManager = new DeviceManager(this);

40

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

mDeviceManager.registerHeadsetStateCallback(this);

}

@Override

public void onDestroy(){

 super.onDestroy();

mDeviceManager.unregisterHeadsetStateCallback(this);

}

 @Override

 public void onHeadsetAttached() {

 // Get notified when a headset connection is detected.

try {

mDeviceManager.open();

} catch (IOException e) {

e.printStackTrace();

}

 }

 @Override

 public void onHeadsetDetached() {

 // Get notified when a headset disconnection is detected.

mDeviceManager.close();

mDeviceManager.release();

 }

 @Override

 public void onHeadsetDisplaying() {

 // Get notified when a headset displaying started.

 }

 @Override

 public void onHeadsetTemperatureError() {

 // Get notified when a headset temperature error happened.

 }

}

Acquisition of device-specific information

Moverio can use device-specific information such as model information and headset serial number. By

using the device-specific information, you can introduce a device authentication mechanism that allows

only a specific moverio to operate in the application.

41

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

To get device-specific information, first establish communication with Moverio. To do this, create an

instance of the DeviceManager class and call the open() method.

Next, you can get device-specific information by using the dedicated API.

Use the getHeadsetProductName() method to get the model information. To get the headset serial

number, first use the isHeadsetSerialNumberAcquisitionSupported() method to check that the connected

Moverio can get the headset serial number, and then use the getHeadsetSerialNumber() method.

Finally, when you have finished obtaining device-specific information, be sure to cancel communication

with Moverio. Use the close() and release() methods to release.

private DeviceManager mDeviceManager = new DeviceManager(context);

mDeviceManager = new DeviceManager(this);

try {

mDeviceManager.open();

} catch (IOException e) {

e.printStackTrace();

}

// Model information

Log.v(“sample”, mDeviceManager.getHeadsetProductName());

// Headset serial information

if (mDeviceManager.isHeadsetSerialNumberAcquisitionSupported()){

Log.v(“sample”, mDeviceManager.getHeadsetSerialNumber());

}

mDeviceManager.close();

mDeviceManager.release();

42

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

Inteligent Controler BO-IC400

With the Inteligent Controler BO-IC400 (Moverio controller), you can easily operate in the touch operation

mode of the controller. In addition, you can limit unnecessary key/touch operations and customize key

operations. With MoverioSDK, these functions can be used from applications.

Note: The functions introduced here are the functions of the controller dedicated to Moverio. You cannot

use these functions on ordinary Android smartphones.

43

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

Key/touch operation lock

With Moverio SDK, you can lock the key operation and touch operation of the controller (BO-IC400). The

target of operation lock is the power button, switching key, touch panel, etc.

To lock the key operation and touch operation of the controller (BO-IC400), import

com.epson.moverio.btcontrol.BtCustomKey (reviewed later) and com.epson.moverio.btcontrol.UIControl

(reviewed later).

import com.epson.moverio.btcontrol.BtCustomKey;

import com.epson.moverio.btcontrol.UIControl;

To lock the key operation, create an instance of BtCustomKey class and specify the key constants in the

table below in the first argument of the setKeyEnable() method. Please specify a boolean type lock (false)

and unlock (true) in the second argument and call it.

Constants Description

BtCustomKey.VOLUME_UP Volume Up Key

BtCustomKey.VOLUME_DOWN Volume DownKey

BtCustomKey.TRIGGER Function Key

BtCustomKey.HOME HOME Key

BtCustomKey.BACK BACK Key

Function Key

Power Button

Volume Key

HOME Key

BACK Key History Key

Display & Touch

Panel

44

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

BtCustomKey.APP_SWITCH History Key

BtCustomKey.POWER Power Button

BtCustomKey.ALLKEY Used to specify all physical keys

public class UIControlActivity extends Activity {

private BtCustomKey mBtCustomKey = null;

private Button mButton_powerKeyLock = null;

@Override

public final void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 mBtCustomKey = new BtCustomKey(this);

 mButton_powerKeyLock = (Button) findViewById(R.id.button_powerKeyLock);

 mButton_powerKeyLock.setOnClickListener(new View.OnClickListener() {

@Override

 public void onClick(View view) {

 mBtCustomKey.setKeyEnable(BtCustomKey.POWER, false /* Disable power key. */);

 }

 });

}

 ：

 ：

}

Create an instance of UIControl class to lock the touch panel operation. Specify lock (false) or unlock (true)

of boolean type in the argument of setTouchpadEnable() method and call it.

public class UIControlActivity extends Activity {

private UIControl mUIControl = null;

private Button mButton_touchpadLock = null;

@Override

public final void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 mUIControl = new BtCustomKey(this);

 mButton_touchpadLock = (Button) findViewById(R.id.button_touchpadLock);

 mButton_touchpadLock.setOnClickListener(new View.OnClickListener() {

@Override

 public void onClick(View view) {

45

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

 mUIControl.setTouchpadEnable(false /* Disable touchpad. */);

 }

 });

}

 ：

 ：

}

46

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

Key code customization

With Moverio SDK, you can change the key code assigned to the physical key of the controller (BO-IC400).

However, you cannot change the key code of the power button.

To customize the controller keycode, import com.epson.moverio.btcontrol.BtCustomKey (reviewed later).

import com.epson.moverio.btcontrol.BtCustomKey;

To customize the key code, create an instance of the BtCustomKey class, specify the target physical key in

the table below as the first argument of the setKeyAssign() method, and specify the key code as the

second argument.

Target Physical Key Key Code

BtCustomKey.VOLUME_UP

BtCustomKey.VOLUME_DOWN

BtCustomKey.TRIGGER

BtCustomKey.HOME

BtCustomKey.BACK

BtCustomKey.APP_SWITCH

KeyEvent.KEYCODE_VOLUME_UP

KeyEvent.KEYCODE_VOLUME_DOW

KeyEvent.KEYCODE_FUNCTION

KeyEvent.KEYCODE_HOME

KeyEvent.KEYCODE_BACK

KeyEvent.KEYCODE_APP_SWITCH

KeyEvent.KEYCODE_F1

KeyEvent.KEYCODE_F2

KeyEvent.KEYCODE_F3

KeyEvent.KEYCODE_F4

public class UIControlActivity extends Activity {

private BtCustomKey mBtCustomKey = null;

private Button mButton_appSwitch2Home = null;

@Override

public final void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 mBtCustomKey = new BtCustomKey(this);

 mButton_appSwitch2Home = (Button) findViewById(R.id.button_appSwitch2Home);

 mButton_appSwitch2Home.setOnClickListener(new View.OnClickListener() {

@Override

 public void onClick(View view) {

 mBtCustomKey.setKeyAssign(BtCustomKey.APP_SWITCH, KeyEvent.KEYCODE_HOME);

 }

 });

}

 ：

 ：

47

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

}

48

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

Debug application of headset model and controller

(Android smartphone, etc.) (network debugging)

When developing an application for a headset model (USB connection type Moverio headset) such as

BT-40, confirm the application operation with a controller connected to USB such as Android smartphone.

At this time, the PC and controller (Android smartphone, etc.) are not connected by USB, so wired

debugging cannot be performed.

This section describes how to develop and debug application software for headset models and Android

smartphones that are connected via USB by connecting to an Android smartphone via a network. Please

check the following sites as well.

https://developer.android.com/studio/command-line/adb#wireless

1. Connect your computer and Android smartphone to the same network.

2. Connect your computer and Android smartphone via USB.

*Hereafter, it will be described on the assumption that there is only one Android smartphone

connected to the computer.

3. Execute the following command on the personal computer to enable adb connection to the

Android smartphone via the network.

adb tcpip 5555

4. Terminate the USB connection between your computer and Android smartphone.

5. Confirm the IP address of the Android smartphone.

On some Android smartphones, the IP address can be confirmed from the setting screen. The

procedure up to the screen where the IP address is displayed varies depending on the Android

smartphone. For details, please check the operating method of your Android smartphone.

6. Execute the following command on the personal computer to connect adb to the Android

smartphone via the network.

adb connect ip_address

ex: adb connect 192.168.1.10

7. Execute the following command on the personal computer and confirm that the Android smartphone

is connected to the personal computer by adb. Make sure the device you just connected is listed.

If not connected (not listed), check the following:

- Are your computer and Android smartphone connected to the same network?

https://developer.android.com/studio/command-line/adb#wireless

49

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

- Repeat the procedure from step 3 several times

- Is the IP address entered in 6. correct?

adb devices

8. Install the application on the Android smartphone and check the application operation using

Android Studio.

50

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

Using the Moverio SDK from Kotlin

This section shows how to use the Moverio SDK from Kotlin.

Devolopment with Moverio SDK

Include the Moverio SDK for projects where kotlin is selected as the development language.

Refer “Embed the Moverio SDK” of “Android application software developmet procedure ” in this

document.

Example of running the Moverio SDK API in Kotlin

Display control in Kotlin

The following is an execution example of brightness acquisition/setting.

val displayManager = DisplayManager(context)

try {

displayManager.open()

} catch (e: IOException) {

e.printStackTrace()

}

val brightness = displayManager.brightness // getBrightness

displayManager.brightness = brightness + 1 // setBrightness

displayManager.close()

51

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

Sensor control in Kotlin

This is an execution example of accelerometer data acquisition.

class SensorActivity : Activity(), SensorDataListener {

private var sensorManager: SensorManager? = null

override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 sensorManager = SensorManager(this)

}

override fun onResume() {

 super.onResume()

try {

sensorManager?.open(SensorManager.TYPE_ACCELEROMETER, this)

} catch (e: IOException) {

e.printStackTrace()

}

}

override fun onPause() {

 super.onPause()

sensorManager?.close(this)

}

override fun onSensorDataChanged(SensorData data) {

 // Do something with this sensor value.

}

}

52

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

Camera control in Kotlin

The execution example of preview acquisition is described below.

class CameraActivity : Activity() {

private var cameraManager: CameraManager? = null

private var cameraDevice: CameraDevice? = null

private var surfaceView: SurfaceView? = null

private var captureStateCallback = object : CaptureStateCallback {

 override fun onCaptureStarted() {

 cameraDevice?.startPreview()

 }

 :

 abridgement

 :

}

override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.camera)

 surfaceView = findViewById(R.id.surfaceView)

 cameraManager = CameraManager(this)

try {

cameraManager?.open(captureStateCallback, null, surfaceView?.holder)

} catch (e: IOException) {

e.printStackTrace()

}

}

override fun onResume() {

 super.onResume()

 cameraDevice?.startCapture()

}

override fun onPause() {

 super.onPause()

cameraDevice?.stopPreview()

cameraDevice?.stopCapture()

}

53

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

override fun onDestroy() {

 super.onDestroy()

cameraManager?.close(cameraDevice)

}

}

54

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

About Android multi-display

Android supports screen output to multiple displays. There are two methods: "Using the Presentaion

class" and "Using the multi-display function of Android 8 or later". "How to use the Presentaion class" can

be used on devices that support API level 17 or later. "How to use the multi-display function of Android 8

or later" is available on compatible terminals of Android 8 or later. "How to use the multi-display function

of Android 8 or later" can output the screen to Moverio without modifying the existing application.

However, the input operation to the application depends on the terminal used. By utilizing these functions,

output to the screen of Moverio and display on the screen of the terminal can be used.

Note: In "How to use the multi-display function of Android 8 or later", the activity of the existing application

must support multi-window mode.

https://developer.android.com/reference/android/app/Presentation
https://developer.android.com/reference/android/app/Presentation
https://developer.android.com/about/versions/oreo/android-8.0#mds

55

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

Summary of MOVERIO application software

development for Windows

Below are the steps required to develop the BT-40/40S Windows applications for Moverio.

Install Windows SDK

The following describes how to install the Windows SDK on a computer equipped with Windows 10.

Acquire Visual Studio 2019

Download Visual Studio 2017 from the following site.

 (As of Jul 2019, it is Visual Studio 2019) https://visualstudio.microsoft.com/vs/

Install Visual Studio 2019

Launch Visual Studio Installer and follow the instructions to install Visual Studio 2019.

Select workload

Start Visual Studio Installer and, select "Universal Windows Platform development", ".NET desktop

development" and "Desktop development with C++" on the workload screen and install. Please check the

detailed procedure on the site below.

https://docs.microsoft.com/en-us/visualstudio/install/install-visual-studio?view=vs-2019

When you are in trouble

Please check Microsoft's Visual Studio documentation.

https://docs.microsoft.com/en-us/visualstudio/?view=vs-2019

https://visualstudio.microsoft.com/vs/
https://docs.microsoft.com/en-us/visualstudio/install/install-visual-studio?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/?view=vs-2019

56

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

Developing an application software

In order to create a desktop application. Choose the workload that fits your application.

Please check the detailed procedure on the site below.

https://docs.microsoft.com/en-us/windows/desktop/index

https://docs.microsoft.com/en-us/windows/desktop/index

57

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

Display control on Windows

Moverio is equipped with a see-through (transmissive) display. The display control in the Windows desktop

application can be controlled by sending a dedicated command using System.IO.Ports.SerialPort which is

the standard COM port access API of Windows. You can control the brightness of the display and switching

between 2D/3D display modes by using the dedicated commands. The brightness of the display can be

adjusted from a dedicated command or can be automatically adjusted according to the illuminance of the

surrounding environment. It is also possible to support the display of 3D contents in Side-by-Side format.

Display brightness adjustment on Windows

Moverio is equipped with a see-through type display, and the visibility of the displayed image changes

depending on the brightness of the surrounding environment. You can make the displayed image easier to

see by increasing the brightness of the display when the surrounding environment is bright and by

decreasing the brightness of the display when the surrounding environment is dark.

To adjust the brightness of the display, use the standard Windows COM port access API

System.IO.Ports.SerialPort and execute the dedicated command “setbright xx” (xx specifies 0 to 20).

Please give me. The brightness of the display can be adjusted in 21 steps from 0 to 20. To set the display

brightness adjustment mode to automatic mode, execute the dedicated command "setbright 50". If the

dedicated command "setbright xx" (xx specifies 0 to 20) is executed when the display brightness

adjustment mode is the automatic mode, the brightness adjustment mode switches to the manual mode.

To get the current brightness of the display, execute the special command "getbright". The command

returns 0 to 20 when the display brightness adjustment mode is manual mode, and the command returns

50 when the display brightness adjustment mode is automatic mode.

Switch 2D/3D display mode on Windows

The Moverio display supports Side-by-Side 3D content display. If the video displayed by Moverio is

Side-by-Side type 3D content and you want to control it from the app,、use System.IO.Ports.SerialPort,

which is the standard COM port access API for Windows, and execute the dedicated command "set2d3d 0"

(2D display mode) or the dedicated command "set2d3d 1" (3D display mode). 。For how to use

System.IO.Ports.SerialPort, refer to the document of SerialPort class of Microsoft Corporation.

Side-by-Side format is a method to store image information for left eye and right eye side by side in one

screen information.

58

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

When creating Side-by-Side format video, place the left-eye image and right-eye image in the left and

right halves of the video, respectively.

For example, when creating a 1280x720 (HD size) Side-by-Side format image, place a 640x720 image in

the left-eye image and a 640x720 image in the right-eye image as shown below.

To switch between 2D/3D display on the display, use the Windows standard COM port access API

System.IO.Ports.SerialPort and use the command “set2d3d 0” (2D display mode) or the command

“set2d3d 1”(Please execute 3D display mode.

To get the current 2D/3D display mode status of the display, execute the command "get2d3d". Returns 0

if the 2D/3D display mode of the display is 2D display mode, 1 if it is 3D display mode.

Disdplay On/Off on Windows

 If you want to temporarily hide the video displayed in Moverio, use the standard Windows COM port

access API System.IO.Ports.SerialPort and use the dedicated command "setmute 0" (display lit), Or

execute the dedicated command "setmute 1" (display off).For how to use System.IO.Ports.SerialPort,

refer to the document of SerialPort class of Microsoft Corporation.

59

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

Display distance control on Windows

You can adjust the display distance of Moverio's display using a dedicated API. The dedicated API has a

function to horizontally shift the left and right display images. You can adjust the display congestion

according to the horizontal shift amount.

 If the actual object is closer than the display distance, shift the left and right images inward as shown

below. By doing so, the virtual display distance of the display can be reduced.

If the actual object is farther than the display distance of the display, shift the left and right images

outward as shown below. By doing so, the virtual display distance of the display can be increased.

However, since the left and right images are shifted by using this function, the edges of the left and right

images will be interrupted. Therefore, it is necessary for the application to consider the screen

configuration according to the amount of video shift. For the relationship between the virtual display

distance of the display and the image shift amount, refer to the range of the virtual display distance

adjustment and the horizontal shift amount.

To adjust the virtual display distance of the display, use the standard Windows COM port access API

System.IO.Ports.SerialPort, and use the dedicated command "setdisplaydistance xx" (xx is the pixel shift

amount -32 to 256 Please specify). For how to use System.IO.Ports.SerialPort, refer to the document of

SerialPort class of Microsoft Corporation.

For the pixel shift amount that can be specified with the dedicated command, refer to the virtual display

distance adjustment range of the display and the horizontal shift amount.

To get the current pixel shift amount, execute the dedicated command "getdisplaydistance".

video

object

video

object

60

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

Display automatic sleep on Windows

You can set the automatic sleep setting of the Moverio display using a dedicated command.

When the display's automatic sleep setting is enabled, putting the Moverio on/off and placing it on a desk

will turn off the display automatically. Also, the display will be displayed automatically when the MOVERIO

headset is installed. By enabling this function, it is possible to reduce the power consumption when the

Moverio headset is not installed.

For the automatic sleep setting of the display, use the Windows standard COM port access API

System.IO.Ports.SerialPort and use the dedicated command "enableautosleep 0" (autosleep OFF) or the

dedicated command "enableautosleep 1". Execute (auto sleep ON).

To get the virtual display distance adjustment value of the current display, execute the special command

"getautosleep".

Display manual sleep on Windows

A dedicated command can be used to set the user to manually put the Moverio display to sleep. 。

If you have enabled the display's manual sleep setting, tap the side of the Moverio to turn off the display.

Also, tap the side of Moverio again to show the display. This function can be used when the wearer of

Moverio wants to immediately turn off the front image.

To set the display to manual, use the Windows standard COM port access API System.IO.Ports.SerialPort,

and use the dedicated command “enableusersleep 0” (automatic sleep OFF) or the dedicated command

“enableusersleep 1”. Execute (auto sleep ON). For the usage of System.IO.Ports.SerialPort, refer to the

document of Microsoft SerialPort class.。

To get the virtual display distance adjustment value of the current display, execute the dedicated

command "getusersleep".

Creating images for the see-through function

MOVERIO is a device that uses projection technology. This system provides the user with an image projected

onto a half-mirror via a light-guided panel, creating a half-mirror version (whereby not all the pixels are

needed) allowing images to be arranged over a real-life scene giving a sense of transparency, and creating a

more vivid augmented reality experience. To create this transparent background effect, so visual elements (text,

graphics...) stand out vividly, the background will need to be set to black when drawing on the projection, so

you display the target section overlapping with the actual images.

61

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

Display Brightness Adjastable Range

The display brightness adjustment range that can be selected differs depending on the model.

Model Range of brightness

BT-35E/30E 0 ~ 20

BT-30C 0 ~ 20

BT-40 0 ~ 20

The range of adjustable virtual display distance and the

horizontal pxicell shift amount

Refer to the table below for the virtual display distance range and horizontal shift amount that can be

adjusted.

※BT-35E/30E and BT-30C are not supported.。

BT-40

Pixcell sift amount virtual display distance

reference value [m]

256 0.76

248 0.79

240 0.81

232 0.83

224 0.85

216 0.88

208 0.91

200 0.94

192 0.97

184 1.00

176 1.03

168 1.07

160 1.11

152 1.16

62

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

144 1.20

136 1.26

128 1.31

120 1.37

112 1.44

104 1.51

96 1.60

88 1.69

80 1.79

72 1.91

64 2.04

56 2.19

48 2.37

40 2.58

32 2.83

24 3.13

16 3.50

8 3.98

0(default) 4.60

-8 5.45

-16 6.70

-24 8.68

-32 12.32

63

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

Sensor control on Windows

The MOVERIO has various sensors in the headset that detect movement, direction, and ambient

illuminance.Sensor control in Windows desktop apps uses the standard Sensor API. The sensor data can

be used to estimate the wearer's head movement and sense the brightness of the surrounding

environment.

Sensor list

Moverio is equipped with various types of sensors.

There are hardware-based sensors such as Accelerameter, Geomagnetic Sensor, Gyoro Scope, and

Ambient Light Sensor, as well as software sensors generated from the output values of multiple

hardware-based sensors.

Sensor Type Description Usage

SENSOR_TYPE_ACCELER

OMETER_3D

Hardware The acceleration of Moverio

including gravity is measured by

the acceleration [G] of 3 axes (x,

y, z).

Motion detection (tilt, etc.)

SENSOR_TYPE_COMPAS

S_3D

Hardware The surrounding geomagnetism

is measured with 3-axis (x, y, z)

geomagnetism [mG].

Orientation detection

SENSOR_TYPE_GYROME

TER_3D

Hardware The angular velocity of Moverio

is measured with the angular

velocity [deg/s] of 3 axes (x, y,

z).

Motion detection (rotation

etc.)

SENSOR_TYPE_AMBIEN

T_LIGHT

Hardware Measure the ambient illuminance

[lx].

Adjusting the brightness of

the display according to the

ambient illumination

GUID_SensorType_Gravi

tyVector

Software Gravity is measured with

acceleration [G] on three axes

(x, y, z).

Motion detection (tilt, etc.)

GUID_SensorType_Linea

rAccelerometer

Software It is measured by acceleration

[G] on three axes (x, y, z)

excluding gravity.

Application to tap, walking

detection, etc.

GUID_SensorType_Relati

veOrientation

Software Measure the orientation of

Moverio with a quaternion that

does not use geomagnetism.

Head tracking etc.

SENSOR_TYPE_AGGREG

ATED_DEVICE_ORIENTA

TION

Software Measure the orientation of

Moverio with a quaternion.

Head tracking etc.

SENSOR_TYPE_CUSTOM Hardware Measures the acceleration of Application to motion

64

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

(0)*1 Moverio including gravity with

uncalibrated 3-axis (x, y, z)

acceleration [G] and 3-axis of

estimated bias compensation

(x_bias, y_bias, z_bias).

detection (tilt, etc.) and

head tracking

SENSOR_TYPE_CUSTOM

(1)*1

Hardware The Moverio's angular velocity is

measured on the uncalibrated

3-axis (x, y, z) angular velocity

[deg/s] and the estimated drift

3-axis (x_bias, y_bias, z_bias).

Application to motion

detection (rotation etc.) and

head tracking

SENSOR_TYPE_CUSTOM

(2)*1

Hardware The surrounding geomagnetism

is measured with uncalibrated

3-axis (x, y, z) geomagnetism

[mG] and 3-axis calibration

information (x_bias, y_bias,

z_bias).

Application to direction

detection and head tracking

SENSOR_TYPE_CUSTO

M (3)*1

Software Detects the

movement/movement of

Moverio.

Headset

attachment/detachment

detection, etc.

SENSOR_TYPE_CUSTOM

(4)*1

Software Detects taps on the headset. Headset tap detection

*1 In the case of SENSOR_TYPE_CUSTOM, it is determined by comparing it with the value of

SENSOR_DATA_TYPE_CUSTOM_USAGE and the value in parentheses in the above table.

Check the site below for more information.

https://docs.microsoft.com/en-us/windows/desktop/sensorsapi/sensor-categories--types--and-datafiel

ds

https://docs.microsoft.com/en-us/windows-hardware/drivers/sensors/sensor-types

https://docs.microsoft.com/en-us/windows/desktop/sensorsapi/sensor-categories--types--and-datafields
https://docs.microsoft.com/en-us/windows/desktop/sensorsapi/sensor-categories--types--and-datafields
https://docs.microsoft.com/en-us/windows-hardware/drivers/sensors/sensor-types

65

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

Axis of Sensors

 The coordinate system of Moverio's sensor differs between the accelerometer and other sensors. When

wearing the Moverio, the X-axis of the accelerometer points to the left, the Y-axis points down, and the

Z-axis points to the wearer's line of sight. Except for the accelerometer, the X axis points to the right, the

Y axis points up, and the Z axis points to the wearer.

+X

+Y

+Z

Headset (other than accelerometer)

+X

+Y

+Z

Headset (for accelerometer)

66

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

Camera control on Windows

Moverio has a camera in the headset that captures the front of the wearer. Camera control in Windows

desktop apps uses Microsoft Media Foundation, (Link) hich is a standard Windows camera control API.

With this API, you can shoot movies and display previews.

CAMERA Specification

 BT-40

Effective pixel count 500 milion pixel

Color array RGB565

Image resolution/frame rate 640x480, 60fps/30fps/15fps

1280x720, 60fps/30fps/15fps

1920x1080, 30fps/15fps

2592x1944, 15fps

Exposure compensation mode auto/manual

Manual exposure compensation step -5 ~ +5

Sharpness 0 ~ +128

White ballance auto

/cloudy_daylight(6000K)/daylight(5500K)

/fluorescent(4200K)/incandescent(3200K)

/twilight(3500K)

Power line frequency 50Hz/60Hz

https://docs.microsoft.com/en-us/windows/win32/medfound/microsoft-media-foundation-sdk

67

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

Audio control on Windows

Moverio can connect a CTIA-compliant earphone/microphone for use in listening to sound sources and

voice calls.To control audio in Windows desktop apps, use Core Audio APIs (Link), which is the standard

audio control API of Windows. With this API, you can perform earphone output of sound source,

microphone input of voice, various parameter settings of earphone/microphone, etc.

Earphone output of sound source

With Moverio, you can listen to the sound source from the connected earphones using Core Audio APIs.

Check the site below for more information.

https://docs.microsoft.com/en-us/windows/desktop/coreaudio/rendersharedeventdriven

Microphone input for voice

With Moverio, you can input audio from a microphone connected using Core Audio APIs. Check the site

below for more information.

https://docs.microsoft.com/en-us/windows/desktop/coreaudio/capturesharedeventdriven

Parameter settings

Moverio allows you to set various parameters for earphones and microphones that are connected using

Core Audio APIs. Check the site below for more information.

https://docs.microsoft.com/en-us/windows/desktop/CoreAudio/programming-guide

Mute setting

With Moverio, it is possible to temporarily stop (mute) earphone output and microphone input using Core

Audio APIs. Check the site below for more information.。

https://docs.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessionevents

-onsimplevolumechanged

https://docs.microsoft.com/en-us/windows/win32/medfound/microsoft-media-foundation-sdk
https://docs.microsoft.com/en-us/windows/desktop/coreaudio/rendersharedeventdriven
https://docs.microsoft.com/en-us/windows/desktop/coreaudio/capturesharedeventdriven
https://docs.microsoft.com/en-us/windows/desktop/CoreAudio/programming-guide
https://docs.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessionevents-onsimplevolumechanged
https://docs.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessionevents-onsimplevolumechanged

68

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

Device management overview onWindows

Moverio can detect important system state changes such as USB connection/disconnection with the host

device, display start on the display, and device temperature abnormality.In addition, Moverio has

device-specific information that can be used. By monitoring changes in the system state, applications can

detect when the device is hot and notify the user. By using the device-specific information, you can build

and implement a device authentication mechanism that allows only a specific moverio to operate in the

application.

Moverio model discrimination

Moverio has different functions depending on the model, and the mounted camera, sensor type, etc. are

different. Therefore, the model of the Moverio connected to the Windows terminal can be identified using

the Vendor ID and Product ID of the USB CDC (Communication Device Class) information. See the table

below for details.

USB Property BT-35E/30E BT-30C BT-40

Vendor ID VID_0483 VID_04B8 VID_04B8

Product ID PID_5750 PID_0C0C PID_0D12

To obtain USB CDC information of Moverio connected to Windows device, use ManagementClass class

of .NET API. Specify "Win32_SerialPort" when creating an instance of this class, get the information of

"PNPDeviceID" for each port, and determine the model by comparing with the above table.

ManagementClass mcW32SerPort = new ManagementClass("Win32_SerialPort");

foreach (ManagementObject port in mcW32SerPort.GetInstances()) {

 string pnpDeviceId = (string)port.GetPropertyValue("PNPDeviceID");

if (pnpDeviceId.Contains("VID_0483") && pnpDeviceId.Contains(“PID_5750”)) {

 Console.WriteLine(“BT-35E/30E detected.”);

}

else if (pnpDeviceId.Contains("VID_04B8") && pnpDeviceId.Contains(“PID_0C0C”)) {

 Console.WriteLine(“BT-30C detected.”);

}

else if (pnpDeviceId.Contains("VID_04B8") && pnpDeviceId.Contains(“PID_0D12”)) {

 Console.WriteLine(“BT-40 detected.”);

}

else {

 Console.WriteLine(“Unknown device”);

}

}

69

CopyrightⒸ2018-2020 Seiko Epson Corporation. All rights reserved.

Check the detailed information of ManagementClass class on the following site.

https://docs.microsoft.com/en-us/dotnet/api/system.management.managementclass?view=dotnet-pla

t-ext-3.1

Monitor system state changes

With Windows, you can monitor changes in important system status of Moverio, such as the start of

display, temperature abnormalities of various devices, etc. By monitoring changes in the system state,

applications can detect when the device is hot and notify the user.

To monitor changes in the system status, use the Windows standard COM port access API

System.IO.Ports.SerialPort and execute the command "getsystemstat" (get system status).For how to use

System.IO.Ports.SerialPort, refer to the document of SerialPort class （Link）of Microsoft Corporation.

The command return value is shown in the table below.

Retuen value Discription

0 Power off

1 In a process of initialing the Moverio system

2 There is no video output from the host device

3 During image display

4 Display off

5 In recovery process

*In the automatic recovery function when the display goes out due to static

electricity

Acquisition of device-specific information

Moverio can use the headset serial number information. By using device-specific information, it is possible

to introduce a device authentication mechanism that allows only a specific moverio to operate in an

application.

To obtain device-specific information, use System.IO.Ports.SerialPort, which is a Windows standard COM

port access API, and execute the command "gethserial" (get headset serial number).For how to use

System.IO.Ports.SerialPort, refer to the document of SerialPort class (Link) of Microsoft Corporation.

https://docs.microsoft.com/en-us/dotnet/api/system.management.managementclass?view=dotnet-plat-ext-3.1
https://docs.microsoft.com/en-us/dotnet/api/system.management.managementclass?view=dotnet-plat-ext-3.1
file:///C:/Work%20at%20Home/Developer's%20Guide/For%20how%20to%20use%20System.IO.Ports.SerialPort,%20refer%20to%20the%20document%20of%20SerialPort%20class%20of%20Microsoft%20Corporation
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport?view=dotnet-plat-ext-3.1

